If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.8x^2=116
We move all terms to the left:
2.8x^2-(116)=0
a = 2.8; b = 0; c = -116;
Δ = b2-4ac
Δ = 02-4·2.8·(-116)
Δ = 1299.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{1299.2}}{2*2.8}=\frac{0-\sqrt{1299.2}}{5.6} =-\frac{\sqrt{}}{5.6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{1299.2}}{2*2.8}=\frac{0+\sqrt{1299.2}}{5.6} =\frac{\sqrt{}}{5.6} $
| Y=125-5x;0x25 | | 16a-(4a-3)=(5+2a) | | 4(-2-3t)=-80 | | A=3.14x2 | | 5x+8x=34+10 | | x+3+11=180 | | y+5=3y+9 | | 104=26p | | x(6+4)–6=20 | | 168=12t | | x(6+4)–6=20 x | | -5+10m=19+18m | | 2x+4+14=180 | | 9c+11=20c | | -9+5v=-v+9 | | 8x+14+70=180 | | 9=-3+2j | | d/22=6 | | -2=4r-14 | | x+3+3x-3=180 | | -9h=-10h-10 | | 6x-2(x+3=10 | | -12h+13h=17 | | 105/x=x | | 7d+2=8d | | 7x+3(-x+6)=42 | | 19=8-t | | 4t+8=-4 | | 2+m=16 | | 8-3z=11 | | -2y=-y+5 | | -6d=-4d+8 |